Abstract

The photoexcited triplet states of three 5,10, 15-tris(pentafluorophenyl)corroles (tpfc), hosting Sn(IV) and Al(III) in their core, namely, Sn(Cl)(tpfc), Al(pyr)2(tpfc) and Al(pyr)2(tpfc-Br8), were studied by time-resolved electron paramagnetic resonance (TREPR) spectroscopy in the nematic liquid crystal E7. Only two of these metallocorroles, namely, Sn(Cl)(tpfc) and Al(pyr)2(tpfc-Br8), exhibit TREPR spectra following pulsed laser excitation. This result is rationalized in terms of a very low quantum yield of triplet formation in Al(pyr)2(tpfc). Analysis of the spin polarized Q-band (34 GHz) EPR spectra of Sn(Cl)(tpfc) and Al(pyr)2(tpfc-Br8) provides detailed information on the magnetic and kinetic parameters of the triplet states as well as on the molecular ordering of the complexes in the liquid crystal. With the assignment of the zero-field splitting parameterD AX, AY, which is attributed to a large increase in the spin-orbit coupling strength arising from the peripheral bromine atoms on the corrole skeleton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.