Abstract
Enhancing crop nitrogen use efficiency (NUE) in agricultural sciences is a pivotal challenge, particularly for high-demand crops like potatoes (Solanum tuberosum L.), the world’s third most significant food crop. This study delves into the molecular responses of potatoes to low nitrogen (LN) stress, employing an integrative approach that combines transcriptomics and metabolomics to compare two cultivars with divergent NUE traits: XS6, known for its high NUE, and NS7, characterized by lower NUE. Our research unveils that XS6 exhibits higher chlorophyll and N content, increased tuber yield, and elevated N assimilation capacity under LN stress conditions compared to NS7. Through transcriptome analysis, we identified critical genes involved in C and N metabolism that had higher expression in XS6. A significant discovery was the high-affinity nitrate transporter 2.7 gene, which showed elevated expression in XS6, suggesting its key role in enhancing NUE. Metabolomics analysis further complemented these findings, revealing a sophisticated alteration of 1252 metabolites under LN stress, highlighting the dynamic interplay between carbon and N metabolism in coping with N scarcity. The integration of transcriptomic and metabolomic data underscored the crucial role of trehalose in mitigating N deficiency and enhancing NUE. This study provides novel insights into the molecular mechanisms governing NUE in potatoes, offering valuable perspectives for molecular breeding to enhance NUE in potatoes and potentially other crops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.