Abstract
Based on detailed spectral synthesis we carry out quantitative measurements of the strength and complexity of surface magnetic fields in the four well-known M-dwarfs GJ 388, GJ 729, GJ 285, and GJ 406 populating the mass regime around the boundary between partially and fully convective stars. Very high resolution R=100000, high signal-to-noise (up to 400) near-infrared Stokes I spectra were obtained with CRIRES at ESO's Very Large Telescope covering regions of the FeH Wing-Ford transitions at 1mum. The field distributions in all four stars are characterized by three distinct groups of field components, the data are neither consistent with a smooth distribution of different field strengths, nor with one average field strength covering the full star. We find evidence of a subtle difference in the field distribution of GJ 285 compared to the other three targets. GJ 285 also has the highest average field of 3.5kG and the strongest maximum field component of 7-7.5kG. The maximum local field strengths in our sample seem to be correlated with rotation rate. While the average field strength is saturated, the maximum local field strengths in our sample show no evidence for saturation. We find no difference between the field distributions of partially and fully convective stars. The one star with evidence for a field distribution different to the other three is the most active star (i.e. with largest x-ray luminosity and mean surface magnetic field) rotating relatively fast. A possible explanation is that rotation determines the distribution of surface magnetic fields, and that local field strengths grow with rotation even in stars in which the average field is already saturated.
Highlights
Low-mass stars of spectral type M are subjects of intensive studies today because of several attractive characteristics
We present the results of magnetic field determination for individual M dwarfs, which are combined together
While most previous studies were based on only a few atomic lines at visual wavelengths, in this work we attempted to extend the spectroscopic investigation of magnetic fields in M dwarfs by using numerous lines of the FeH molecule
Summary
Low-mass stars of spectral type M are subjects of intensive studies today because of several attractive characteristics. Stellar evolution predicts that stars of spectral types later than M3.5 become fully convective and do not host an interface layer of strong differential rotation. Both partially and fully convective stars can host magnetic fields of similar intensities but most likely with different dynamo mechanisms operating in their interiors. All this provides a unique testing ground and a challenge for the theory
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.