Abstract

Rapid and accurate mapping of soil organic carbon (SOC) is of great significance to understanding the spatial patterns of soil fertility and conducting soil carbon cycle research. Previous studies have dedicated considerable efforts to the spatial prediction of SOC content, but few have systematically quantified the effects of environmental covariates selection, the spatial scales and the model types on SOC prediction accuracy. Here, we spatially predicted SOC content through digital soil mapping (DSM) based on 186 topsoil (0–20 cm) samples in a typical hilly red soil region of southern China. Specifically, we first determined an optimal covariate set from different combinations of multiple environmental variables, including multi-sensor remote sensing images (Sentinel-1 and Sentinel-2), climate variables and DEM derivatives. Furthermore, we evaluated the impacts of spatial resolution (10 m, 30 m, 90 m, 250 m and 1000 m) of covariates and the model types (three linear and three non-linear machine learning techniques) on the SOC prediction. The results of the performance analysis showed that a combination of Sentinel-1/2-derived variables, climate and topographic predictors generated the best predictive performance. Among all variables, remote sensing covariates, especially Sentinel-2-derived predictors, were identified as the most important explanatory variables controlling the variability of SOC content. Moreover, the prediction accuracy declined significantly with the increased spatial scales and achieved the highest using the XGBoost model at 10 m resolution. Notably, non-linear machine learners yielded superior predictive capability in contrast with linear models in predicting SOC. Overall, our findings revealed that the optimal combination of predictor variables, spatial resolution and modeling techniques could considerably improve the prediction accuracy of the SOC content. Particularly, freely accessible Sentinel series satellites showed great potential in high-resolution digital mapping of soil properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.