Abstract

In this talk, we report the controlled vapor phase synthesis of MoS2 atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. The atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulfide atomic layers are examined and first-principles calculations are applied to investigate their energy landscape. The electrical properties of the atomic layers are examined and the role of grain boundaries is evaluated. More importantly, if precise two-dimensional domains of graphene, h-BN and MoS2 atomic layers can be seamlessly stitched together, in-plane heterostructures with interesting electronic applications could potentially be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically-patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size that ranging from tens of nanometers to millimeters. The resulting graphene/h-BN atomic layers can be peeled off from their growth substrate and transferred to various platforms including flexible substrate. Finally, we demonstrate how self-assembled monolayers with a variety of end termination chemistries can be utilized to tailor the physical properties of single-crystalline MoS2 atomic-layers. Our data suggests that combined interface-related effects of charge transfer, built-in molecular polarities, varied densities of defects, and remote interfacial phonons strongly modify the electrical and optical properties of MoS2, illustrating an engineering approach for local and universal property modulations in two-dimensional atomic-layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.