Abstract

Hydrogenation of CO2 to form methanol utilizing green hydrogen is a promising route to realizing carbon neutrality. However, the development of catalyst with high activity and selectivity to methanol from the CO2 hydrogenation is still a challenge due to the chemical inertness of CO2 and its characteristics of multi-path conversion. Herein, a series of highly active carbon-confining molybdenum sulfide (MoS2@C) catalysts were prepared by the in-situ pyrolysis method. In comparison with the bulk MoS2 and MoS2/C, the stronger interaction between MoS2 and the carbon layer was clearly generated. Under the optimized reaction conditions, MoS2@C showed better catalytic performance and long-term stability. The MoS2@C catalyst could sustain around 32.4% conversion of CO2 with 94.8% selectivity of MeOH for at least 150 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.