Abstract

The Qinghai-Tibet Plateau stands as one of the most ecologically fragile and biodiversity-rich regions globally. Understanding the distribution of different taxa and their relationship with environmental factors is crucial for effective conservation and sustainable management. Polytrichaceae, a significant bryophyte family widely distributed in Tibet, displays distinct structural, morphological, and phylogenetic traits compared to other mosses. Despite its importance, the distribution of Polytrichaceae in Tibet and its correlation with environmental factors have yet to be explored. In this study, we used an optimized Maximum Entropy (MaxEnt) model to explore the potential suitable habitats of Polytrichaceae in Tibet, aiming to clarify their geographic distribution pattern as well as the key environmental influence factors. The model had high accuracy with an average Area Under the Curve (AUC) of 0.933 and True Skill Statistics (TSS) value of 0.789. The results showed that the potential suitability habitats of Polytrichaceae were mainly located in southeastern Tibet, and the low suitable, moderately suitable, and highly suitable habitats accounted for 12.53 %, 6.84 %, and 3.31 % of the total area of Tibet respectively. Unsuitable habitats were mainly located in northwestern Tibet, accounting for about 77.32 %. In Tibet, temperature factors (Mean Temperature of Coldest Quarter (Bio11) and Annual Mean Temperature (Bio1)) played a pivotal role in determining the potential suitable habitats for Polytrichaceae, and elevation, precipitation, and vegetation coverage also had an important influence. The family preferred warm, moist and densely vegetated habitats in Tibet. This study enriched our ecological understanding of bryophyte ecology in this region and provided data-driven support for biodiversity conservation and ecosystem management in Tibet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.