Abstract

Digital outcrop models (DOMs) provide a rich set of resources for geoscience education, including DOMs that are primarily developed for scientific purposes. This presentation will illustrate the initial stages of an analytical approach as applied to DOMs that is intended to enhance their use in educational settings. Several resulting principles will be offered for consideration and discussion, with the goal of informing the design and dissemination of DOMs to maximize their use in instruction. Like other resources that aren’t first and foremost developed for use in education, the instructional applications of DOMs can be enhanced by making use of their inherent curriculum potential. The concept of curriculum potential posits that both materials designed for education and those designed primarily for other uses hold possibilities for instruction that are greater than what was intended by the people who created them. Elements of curriculum potential can be drawn out of resources in a variety of ways. For example, skilled educators often can intuitively recognize ways of using resources in instruction that are both novel and effective—and may extend past the intentions of the designers. Another way to bring curriculum potential to light is through analysis based on curriculum theory, instructional models, and other formal frameworks. Such analyses can identify principles to guide effective pedagogical applications of the materials. In instances where developers are open to the resources they are generating being applied across multiple use cases, such principles can provide guidance for broadening the benefits the materials offer to different user groups simultaneously. It can be reasoned that one way to recognize possible uses of DOMs in education is to position them as analogs to other resources that are primarily developed for use outside of instruction and for which similar analyses have taken place. For example, geoheritage sites are analogous to DOMs in that geoheritage sites are selected and described for purposes (e.g., recognition, conservation) that are not primarily related to their role as educational resources. Therefore, what has been learned about how information associated with geoheritage sites can be disseminated in ways that facilitate their use in education may be suggestive of ways that DOMs can be presented to enhance their educational uses. This analytical crossover seems especially plausible since many DOMs focus on elements of geoheritage sites. The education and outreach personnel at the American Geosciences Institute (AGI) have been exploring the curriculum potential of geoheritage sites using concepts from various frameworks in curriculum and instruction—including place-based education, phenomenon-based learning, pedagogical content knowledge, and others. The goal is to inform the dissemination of information about geoheritage sites (e.g., in textual descriptions, web portals) to enable the realization of their curriculum potential. One outcome is the recommendation that information be provided that contextualizes each geoheritage site across multiple values (e.g., aesthetic, educational, cultural, historical, scientific). Such information can be expected to foster both multi-disciplinary and interdisciplinary learning. A similar analytical approach can be applied to DOMs and can benefit from (and perhaps be accelerated by) what has been learned about geoheritage sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.