Abstract
Sulfasalazine is used as an anti-inflammatory drug to treat large intestine diseases and atrophic arthritis. In the solid state, two tautomers are known: an amide tautomer (triclinic polymorph) and an imide tautomer (monoclinic polymorph). Crystallization of six new multicomponent solids of sulfasalazine with three cocrystal formers and three salt formers has been achieved by slurry, liquid-assisted grinding and slow evaporation methods. All of the solid forms are characterized by X-ray diffraction techniques, thermal analysis, and Fourier transform infrared spectroscopy. The crystal structural analysis reveals that two sulfasalazine molecules or anions arrange in a head-to-head fashion involving their pyridyl, amide, and sulfonyl groups in an R22(7):R22(8):R22(7) motif. This is the key structural unit appearing in both sulfasalazine imide polymorph and all six multicomponent crystals. In addition, sulfasalazine exists in the amide form in all unsolvated multicomponent crystals obtained in this work and adopts the imide tautomer in the solvated cocrystals and salt. Hirshfeld surface analysis and the associated two-dimensional (2D) fingerprint plots demonstrate that sulfasalazine has significant hydrogen bond donor capability when cocrystallized and is a significant hydrogen bond acceptor in the salts. The frontier molecular orbital analysis indicates that sulfasalazine cocrystals are chemically more stable than the salts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.