Abstract

Phenol and some of its derivatives exhibit interesting tunneling motions consisting of two groups of transitions separated by a few hundred MHz. Recently, one of its derivatives, 2,6-di-tert-butylphenol, has shown additional hyperfine tunneling components, the origin of which remains unclear. In this work, another member of the family, 2,6-diethylphenol, has been investigated through its rotational spectrum. The jet-cooled broadband chirped-pulse Fourier transform microwave spectra in the 2–8 GHz frequency region revealed the presence of two conformers. The comparison with the equilibrium structure obtained by computational calculations at the B3LYP-D3(BJ)/Def2-TZVP level validates the structural determination and the orientation of the lateral ethyl groups. Additional observation of all the singly-substituted 13C isotopologues for the most stable ones allowed the determination of the substitution structure by means of the Kraitchman equations. Both conformers exhibited tunneling that was reproduced using an advanced 1D model, which provides an estimate of the barrier height for both conformers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.