Abstract

We recently identified a novel peptide ligase (PGM1), an ATP-grasp-ligase, that catalyzes amide bond formation between (S)-2-(3,5-dihydroxy-4-methoxyphenyl)-2-guanidinoacetic acid and ribosomally supplied oligopeptides in pheganomycin biosynthesis. This was the first example of an ATP-grasp-ligase utilizing peptides as nucleophiles. To explore the potential of this type of enzyme, we performed a BLAST search and identified many orthologs. The orthologs of Streptomyces mobaraensis, Salinispora tropica, and Micromonospora sp. were found in similar gene clusters consisting of six genes. To probe the functions of these genes, we heterologously expressed each of the clusters in Streptomyces lividans and detected novel and structurally similar pseudotripeptides in the broth of all transformants. Moreover, a recombinant PGM1 ortholog of Micromonospora sp. was demonstrated to be a novel dipeptide ligase catalyzing amide bond formation between amidino-arginine and dipeptides to yield tripeptides; this is the first report of a peptide ligase utilizing dipeptides as nucleophiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.