Abstract

Original periodic first-principles calculations based on the generalized gradient approximation combined with several analyses in microspectroscopy are presented for a hydrated uranium carbonate crystal, andersonite, possessing a specific channel structure. Infrared and ultraviolet–visible absorption, Raman scattering, and steady-state and time-resolved photoluminescence spectroscopy are used to address the atomic vibrations of water, uranyl, and carbonate ions, to determine the fluorescence decay time (around 220 μs) and to estimate the amplitude of the optical gap (close to 3 eV). The role of structural water for andersonite stability is discussed by also performing calculations on a dehydrated model structure. Experiments and calculations address both the intrachannel and extra channel possibilities for the water molecules. The current research is a detailed study of a water-containing channel uranium system using a combined infrared/Raman treatment coupled with density functional theory calculation, providing new physical insight into the spectroscopic understanding of these channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.