Abstract

We performed large-scale molecular dynamics simulations based on a machine-learning force field (MLFF) to investigate the Li-ion transport mechanism in cation-disordered Li3TiCl6 cathode at six different temperatures, ranging from 25°C to 100°C. In this work, deep neural network method and data generated by ab − initio molecular dynamics (AIMD) simulations were deployed to build a high-fidelity MLFF. Radial distribution functions, Li-ion mean square displacements (MSD), diffusion coefficients, ionic conductivity, activation energy, and crystallographic direction-dependent migration barriers were calculated and compared with corresponding AIMD and experimental data to benchmark the accuracy of the MLFF. From MSD analysis, we captured both the self and distinct parts of Li-ion dynamics. The latter reveals that the Li-ions are involved in anti-correlation motion that was rarely reported for solid-state materials. Similarly, the self and distinct parts of Li-ion dynamics were used to determine Haven’s ratio to describe the Li-ion transport mechanism in Li3TiCl6. Obtained trajectory from molecular dynamics infers that the Li-ion transportation is mainly through interstitial hopping which was confirmed by intra- and inter-layer Li-ion displacement with respect to simulation time. Ionic conductivity (1.06 mS/cm) and activation energy (0.29eV) calculated by our simulation are highly comparable with that of experimental values. Overall, the combination of machine-learning methods and AIMD simulations explains the intricate electrochemical properties of the Li3TiCl6 cathode with remarkably reduced computational time. Thus, our work strongly suggests that the deep neural network-based MLFF could be a promising method for large-scale complex materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.