Abstract

Evidencing subtle conformational transitions in proteins occurring upon small modulator binding usually requires atomic resolution techniques (X-ray crystallography or NMR). Recently, hyphenation of ion mobility and mass spectrometry (IM-MS) has greatly enlarged the potentials for biomolecular assembly structural characterization. Using the well 3D-characterized Bcl-xL/ABT-737 protein model, we explored in the present report whether IM-MS can be used to differentiate close conformers and monitor collision cross section (CCS) differences correlating with ligand-induced conformational changes. Because comparing CCS derived from IM-MS data with 3D-computed CCS is critical for thorough data interpretation, discussing pitfalls related to protein construct similarity and missing sequence sections in PDB files was of primary importance to avoid misinterpretation. The methodic exploration of instrument parameters showed enhanced IM separation of Bcl-xL conformers by combining high wave heights and velocities with low helium and nitrogen flow rates while keeping a high He/N(2) flow rate ratio (>3). The robustness of CCS measurements was eventually improved with a modified IM calibration method providing constant CCS values regardless of instrument settings. Altogether, optimized IM-MS settings allowed a 0.4 nm(2) increase (i.e., 2%) of Bcl-xL CCS to be evidenced upon ABT-737 binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.