Abstract

In the current study, a series of fluorine-substituted piperidine derivatives (1–8) has been synthesized and characterized by various spectroscopic techniques. In vitro and in vivo enzyme inhibitory studies were conducted to elucidate the efficacy of these compounds, shedding light on their potential therapeutic applications. To the best of our knowledge, for the first time, these heterocyclic structures have been investigated against α-glucosidase and cholinesterase enzymes. The antioxidant activity of the synthesized compounds was also assessed. Evaluation of synthesized compounds revealed notable inhibitory effects on α-glucosidase and cholinesterases. Remarkably, the target compounds (1–8) exhibited extraordinary α-glucosidase inhibitory activity as compared to the standard acarbose by several-fold. Subsequently, the potential antidiabetic effects of compounds 2, 4, 5, and 6 were validated using a STZ-induced diabetic rat model. Kinetic studies were also performed to understand the mechanism of inhibition, while structure-activity relationship analyses provided valuable insights into the structural features governing enzyme inhibition. Kinetic investigations revealed that compound 4 displayed a competitive mode of inhibition against α-glucosidase, whereas compound 2 demonstrated mixed-type behavior against AChE. To delve deeper into the binding interactions between the synthesized compounds and their respective enzyme targets, molecular docking studies were conducted. Overall, our findings highlight the promising potential of these densely substituted piperidines as multifunctional agents for the treatment of diseases associated with dysregulated glucose metabolism and cholinergic dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.