Abstract

AbstractBackgroundThe quest to manufacture large amounts of syngas to bridge fossil fuels and the renewable energy ecosystem stimulates the creation of efficient and stable heterogeneous catalysts. The NiCeO2 catalysts, synthesized via ultrasonic‐assisted citric acid complexation, are highly efficient for the dry reforming of methane (DRM) reaction. Different promoter metals (Zr, La and Sr) were tested for catalytic performance and syngas production. A range of analyses, including X‐ray diffraction (XRD), N2 physisorption, H2 temperature‐programmed reduction, CO2 temperature‐programmed desorption, field emission scanning electron microscopy (FESEM), transmission electron microscopy and X‐ray photoelectron spectroscopy, were employed to characterize the physicochemical properties of the catalysts.ResultsXRD results indicated the formation of NiO, CeO2, solid solution ceria–zirconia, perovskite LaNiO3 and SrNiO3 crystalline phases. FESEM results showed the promoted catalysts (Zr, La, Sr) produce large pores to facilitate reactant diffusion, with zirconia specifically creating a spiderweb morphology. At 800 °C, the CH4 and CO2 conversions follow the sequence of NiCeO2 catalyst (CH4 = 54%, CO2 = 45%) < Sr/NiCeO2 (CH4 = 60%, CO2 = 67%) < La/NiCeO2 (CH4 = 85%, CO2 = 84%) < Zr/NiCeO2 (CH4 = 95%, CO2 = 87%). The integration of promoters in DRM catalysts has notably improved carbon formation resistance, as evidenced by the following ranking: Zr/NiCeO2 (5.1 wt%) < commercial catalyst (6.0 wt%) < La/NiCeO2 (7.85 wt%) < Sr/NiCeO2 (10.9 wt%) < NiCeO2 (11.3 wt%).ConclusionThis study demonstrates that incorporating promoters, particularly Zr, in NiCeO2 significantly enhances resistance to carbon formation. It offers valuable insights into selecting metal catalyst promoters for excellent catalytic performance in DRM. © 2024 Society of Chemical Industry (SCI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.