Abstract

Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in the same sentence are not well distinguished, while intuitively, they are related to the sentence domain to varying degrees and thus should exert different effects on the multi-domain NMT model. In this article, we are committed to distinguishing and exploiting different word-level domain contexts for multi-domain NMT. For this purpose, we adopt multi-task learning to jointly model NMT and monolingual attention-based domain classification tasks, improving the NMT model in two ways: 1) One domain classifier and one adversarial domain classifier are introduced to conduct domain classifications of input sentences. During this process, two generated gating vectors are used to produce domain-specific and domain-shared annotations for decoder; 2) We equip decoder with an attentional domain classifier. Then, the derived attentional weights are utilized to refine the model training via word-level cost weighting, so that the impacts of target words can be discriminated by their relevance to sentence domain. Experimental results on several multi-domain translations demonstrate the effectiveness of our model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.