Abstract

To prevent CO2 accumulation in the atmosphere generated from scorching of fossil fuels, carbon capture and sequestration (CCS) technology is considered as a potential route to mitigate the emissions of CO2 from reaching the atmosphere. Power generation from sources such as gas, coal and biomass can fulfill the energy demand more readily than many other sources of electricity production. Thus these sources may be retained as important alternative option in the global energy cycle. In order to curtail CO2, porous aramid network was fabricated by the condensation of 1,3,5-benzenetricarbonyl trichloride and 1,3-phenylenediamine in 1,4-dioxane solvent. Aramid was characterized for various analyses including FTIR, XRD, TGA, BET surface area and pore size analysis, FESEM and CO2 adsorption measurements. Excellent thermal stability was provided by strong amide linkages in the polymer backbone. Optimum CO2 uptake of aramid was achieved to be 23.14mg·g−1 at 273K at 0.1 MPa. The basic amide groups of network structure showed greater affinity for CO2. Excellent thermal stability of aramid makes it a promising sorbent for CO2 capture in adverse conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.