Abstract

The authors previously analysed a real-world solid waste management (SWM) system using the solid waste optimization life-cycle framework (SWOLF) to identify optimal SWM strategies that meet modelled objectives (e.g. cost, environmental impacts, landfill diversion). While mathematically optimal strategies can support SWM decision making, they may not be readily implementable because of unmodelled objectives (e.g. practical limitations, social preferences, political and management considerations). A mathematical programming technique extending SWOLF is used to systematically identify, for several scenarios, different ‘optimal’ SWM strategies that are maximally different from each other in terms of waste flows, while meeting modelled objectives and constraints. The performance with respect to unmodelled issues was analysed to demonstrate the flexibility in potential strategies. Practitioner feedback highlighted implementation challenges due to existing practices; however, insights gained from this exercise led to more plausible and acceptable strategies by incrementally modifying the initial SWM alternatives generated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.