Abstract

This study introduces a feasible approach for utilizing a conventional High-Performance Liquid Chromatography (HPLC) instrument at the capillary scale (1 - 10 µL/min). The development of an active flow splitter and an adapted UV-visible (UV–vis) detection cell are described. The system employs an Arduino Uno board to monitor a flow sensor and control a stepper motor that automates a split valve to achieve capillary-scale flow rates from a conventional pump. A capillary UV–vis cell compatible with conventional detectors, featuring an optical path length with a volume of 14 nL, was developed to address the detection challenges at this scale and minimize extra column band broadening. The system performance was assessed by a lab-packed LC capillary column with 0.25 mm x 15 cm dimensions packed with 3.0 µm C18 particles. Model compounds, particularly polycyclic aromatic hydrocarbons (PAHs), were employed to assess the functionality of all developed components in terms of theoretical plates, resolution, and band broadening. The proposed system is a profitable, reliable, and cost-effective tool for miniaturized liquid chromatography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.