Abstract

BackgroundIn biological systems, metabolomics can not only contribute to the discovery of metabolic signatures for disease diagnosis, but is very helpful to illustrate the underlying molecular disease-causing mechanism. Therefore, identification of disease-related metabolites is of great significance for comprehensively understanding the pathogenesis of diseases and improving clinical medicine.ResultsIn the paper, we propose a disease and literature driven metabolism prediction model (DLMPM) to identify the potential associations between metabolites and diseases based on latent factor model. We build the disease glossary with disease terms from different databases and an association matrix based on the mapping between diseases and metabolites. The similarity of diseases and metabolites is used to complete the association matrix. Finally, we predict potential associations between metabolites and diseases based on the matrix decomposition method. In total, 1,406 direct associations between diseases and metabolites are found. There are 119,206 unknown associations between diseases and metabolites predicted with a coverage rate of 80.88%. Subsequently, we extract training sets and testing sets based on data increment from the database of disease-related metabolites and assess the performance of DLMPM on 19 diseases. As a result, DLMPM is proven to be successful in predicting potential metabolic signatures for human diseases with an average AUC value of 82.33%.ConclusionIn this paper, a computational model is proposed for exploring metabolite-disease pairs and has good performance in predicting potential metabolites related to diseases through adequate validation. The results show that DLMPM has a better performance in prioritizing candidate diseases-related metabolites compared with the previous methods and would be helpful for researchers to reveal more information about human diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.