Abstract
The aim of the present study was to investigate the mechanism of metastasis in colorectal cancer (CRC) using microRNA (miRNA) and mRNA expression profiles. The mRNA and miRNA expression profiles of the GSE2509 and GSE56350 datasets were obtained from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified using the limma software package. The Database for Annotation, Visualization and Integrated Discovery was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs. The predicted target genes associated with the DEMs were identified using the miRWalk database and the enrichment analysis was conducted using the clusterProfiler package. The miRNA-gene molecular interaction network was visualized using the Cytoscape software platform. A total of 544 DEGs and 42 DEMs were identified. DEGs were annotated in 320 GO terms and 11 KEGG pathways. Overall, 366 miRNA-gene pairs were identified and the miRNA-gene network was visualized. Furthermore, the predicted target genes were mainly classified in 12 pathways. The results of the present study suggest that fibronectin type III domain-containing 3B, cysteine rich transmembrane BMP regulator 1 and forkhead box J2 may be potential therapeutic and prognostic targets of metastatic CRC. In addition, pathways in cancer, the Wnt signaling pathway and extracellular matrix-receptor interaction may play a critical role in CRC metastasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.