Abstract

Identification of the key components in the physical and chemical milieu directing donor cells into a desired phenotype is a requirement in the investigation of bioscaffolds for the advancement of cell-based therapies for retinal neurodegeneration. We explore the effect of electrospun poly-ε-caprolactone (PCL) fiber scaffold topography and functionalization and culture medium, on the behavior of mouse retinal cells. Dissociated mouse retinal post-natal cells were seeded on random or aligned oriented fibers, with or without laminin coating and cultured with either basic or neurotrophins enriched medium for 7days. Addition of laminin in combination with neurotrophins clearly promoted cell- morphology, fate, and neurite extension. Nanotopography per se significantly affected cell morphology, with mainly bipolar profiles on aligned fibers and more multipolar profiles on random fibers. Laminin induced a remarkable 90° switch of neurite orientation. Herewith, we demonstrate that the chemical cue is stronger than the physical cue for the orientation of retinal neurites and describe the requirement of both neurotrophins and extracellular matrix proteins for extended neurite outgrowth and formation of complex retinal neuronal networks. Therefore, tailor-made PCL fiber mats, which can be physically and chemically modified, indeed influence cell behavior and hence motivate further retinal restorative studies using this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.