Abstract

Lysophosphatidylserine (LysoPS) is an endogenous pan-agonist of three G-protein coupled receptors (GPCRs): LPS1/GPR34, LPS2/P2Y10, and LPS3/GPR174, and we previously reported a series of LysoPS-based agonists of these receptors. Interestingly, we found that LPS1 agonist activity was very sensitive to structural change at the hydrophobic fatty acid moiety, whereas LPS2 agonist activity was not. Here, to probe the molecular basis of LPS2 agonist binding, we developed a new class of hydrophobic fatty acid surrogates having a biphenyl-ether scaffold. The LPS2 agonist activity of these compounds proved sensitive to molecular modification of the hydrophobic skeleton. Thus, we next constructed an LPS2 model by homology modeling and docking/molecular dynamics (MD) simulation, and validated it by means of SAR studies together with point mutations of selected receptor amino-acid residues. The putative ligand-binding site of LPS2 is Γ-shaped, with a hydrophilic site horizontally embedded in the receptor transmembrane helix bundles and a perpendicular hydrophobic groove adjoining transmembrane domains 4 and 5 that is open to the membrane bilayer. The binding poses of LPS2 agonists to this site are consistent with easy incorporation of various kinds of fatty acid surrogates. Structural development based on this model afforded a series of potent and selective LPS2 full agonists, which showed enhanced in vitro actin stress fiber formation effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.