Abstract

Recent theoretical and experimental works have connected Hebbian plasticity with the reinforcement learning (RL) paradigm, producing a class of trial-and-error learning in artificial neural networks known as neo-Hebbian plasticity. Inspired by the role of the neuromodulator dopamine in synaptic modification, neo-Hebbian RL methods extend unsupervised Hebbian learning rules with value-based modulation to selectively reinforce associations. This reinforcement allows for learning exploitative behaviors and produces RL models with strong biological plausibility. The review begins with coverage of fundamental concepts in rate- and spike-coded models. We introduce Hebbian correlation detection as a basis for modification of synaptic weighting and progress to neo-Hebbian RL models guided solely by extrinsic rewards. We then analyze state-of-the-art neo-Hebbian approaches to the exploration–exploitation balance under the RL paradigm, emphasizing works that employ additional mechanics to modulate that dynamic. Our review of neo-Hebbian RL methods in this context indicates substantial potential for novel improvements in exploratory learning, primarily through stronger incorporation of intrinsic motivators. We provide a number of research suggestions for this pursuit by drawing from modern theories and results in neuroscience and psychology. The exploration–exploitation balance is a central issue in RL research, and this review is the first to focus on it under the neo-Hebbian RL framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.