Abstract

We propose a new method for solving high-dimensional dynamic programming problems and recursive competitive equilibria with a large (but finite) number of heterogeneous agents using deep learning. The curse of dimensionality is avoided due to four complementary techniques: (1) exploiting symmetry in the approximate law of motion and the value function; (2) constructing a concentration of measure to calculate high-dimensional expectations using a single Monte Carlo draw from the distribution of idiosyncratic shocks; (3) sampling methods to ensure the model fits along manifolds of interest; and (4) selecting the most generalizable over-parameterized deep learning approximation without calculating the stationary distribution or applying a transversality condition. As an application, we solve a global solution of a multi-firm version of the classic Lucas and Prescott (1971) model of investment under uncertainty. First, we compare the solution against a linear-quadratic Gaussian version for validation and benchmarking. Next, we solve nonlinear versions with aggregate shocks. Finally, we describe how our approach applies to a large class of models in economics. Institutional subscribers to the NBER working paper series, and residents of developing countries may download this paper without additional charge at www.nber.org.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.