Abstract
This paper proposes a technique for reducing impulse noise from corrupted hyperspectral images. We exploit the spatiospectral correlation present in hyperspectral images to sparsify the datacube. Since impulse noise is sparse, denoising is framed as an l1-norm regularized l1-norm data fidelity minimization problem. We derive an efficient split Bregman-based algorithm to solve the same. Experiments on real datasets show that our proposed technique, when compared with state-of-the-art denoising algorithms, yields better results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.