Abstract

Run time distributions or time-to-target plots are very useful tools to characterize the running times of stochastic algorithms for combinatorial optimization. We further explore run time distributions and describe a new tool to compare two algorithms based on stochastic local search. For the case where the running times of both algorithms fit exponential distributions, we derive a closed form index that gives the probability that one of them finds a solution at least as good as a given target value in a smaller computation time than the other. This result is extended to the case of general run time distributions and a numerical iterative procedure is described for the computation of the above probability value. Numerical examples illustrate the application of this tool in the comparison of different sequential and parallel algorithms for a number of distinct problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.