Abstract

AbstractApproximate value iteration methods for reinforcement learning (RL) generalize experience from limited samples across large state-action spaces. The function approximators used in such methods typically introduce errors in value estimation which can harm the quality of the learned value functions. We present a new batch-mode, off-policy, approximate value iteration algorithm called Trajectory Fitted Q-Iteration (TFQI). This approach uses the sequential relationship between samples within a trajectory, a set of samples gathered sequentially from the problem domain, to lessen the adverse influence of approximation errors while deriving long-term value. We provide a detailed description of the TFQI approach and an empirical study that analyzes the impact of our method on two well-known RL benchmarks. Our experiments demonstrate this approach has significant benefits including: better learned policy performance, improved convergence, and some decreased sensitivity to the choice of function approximation.KeywordsFunction ApproximationMarkov Decision ProcessGeneralization ErrorRegression TargetPolicy PerformanceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.