Abstract

Growing stock volume is an important biophysical parameter describing the state and dynamics of the Boreal zone. Validation of growing stock volume (GSV) maps based on satellite remote sensing is challenging due to the lack of consistent ground reference data. The monitoring and assessment of the remote Russian forest resources of Siberia can only be done by integrating remote sensing techniques and interdisciplinary collaboration. In this paper, we assess the information content of GSV estimates in Central Siberian forests obtained at 25 m from ALOS-PALSAR and 1 km from ENVISAT-ASAR backscatter data. The estimates have been cross-compared with respect to forest inventory data showing 34% relative RMSE for the ASAR-based GSV retrievals and 39.4% for the PALSAR-based estimates of GSV. Fragmentation analyses using a MODIS-based land cover dataset revealed an increase of retrieval error with increasing fragmentation of the landscape. Cross-comparisons of multiple SAR-based GSV estimates helped to detect inconsistencies in the forest inventory data and can support an update of outdated forest inventory stands.

Highlights

  • Forests play a pivotal role in Earth’s carbon balance

  • Siberian Pine and Scots Pine exhibit the highest growing stock volume ranging from 360 m3/ha (Dolgomostowsk) to 480 m3/ha (Padunsk)

  • Results of this study show that an interplay of (a) sensor and growing stock volume (GSV) retrieval method; (b) forest cover type and distribution; and (c) forest inventory in the different forest management areas are affecting the incongruences of the FI-SAR GSV distribution

Read more

Summary

Introduction

Forests play a pivotal role in Earth’s carbon balance. Our ability to fully understand and quantify the impact that vast forests have on the global environment is important for the monitoring of international agreements aimed at CO2 reductions. The forests in Central Siberia are important carbon sinks [1,2,3,4]. Quantifying the state and dynamics of above ground biomass is of utmost importance for forest resource management on local and regional scale administrative levels. Human and environmental forest disturbances continuously change forest cover and biomass distribution. The magnitude and extent of on-going environmental pressures (e.g., forest fragmentation and the impact of global climate change) and the loss rates of particular habitat types is not known in detail in Central

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.