Abstract

Despite the plethora of successful Super-Resolution Reconstruction (SRR) models applied to natural images, their application to remote sensing imagery tends to produce poor results. Remote sensing imagery is often more complicated than natural images and has its peculiarities such as being of lower resolution, it contains noise, and often depicting large textured surfaces. As a result, applying non-specialized SRR models like the Enhanced Super Resolution Generative Adversarial Network (ESRGAN) on remote sensing imagery results in artifacts and poor reconstructions. To address these problems, we propose a novel strategy for enabling an SRR model to output realistic remote sensing images: instead of relying on feature-space similarities as a perceptual loss, the model considers pixel-level information inferred from the normalized Digital Surface Model (nDSM) of the image. This allows the application of better-informed updates during the training of the model which sources from a task (elevation map inference) that is closely related to remote sensing. Nonetheless, the nDSM auxiliary information is not required during production i.e., the model infers a super-resolution image without additional data. We assess our model on two remotely sensed datasets of different spatial resolutions that also contain the DSMs of the images: the DFC2018 dataset and the dataset containing the national LiDAR fly-by of Luxembourg. We compare our model with ESRGAN and we show that it achieves better performance and does not introduce any artifacts in the results. In particular, the results for the high-resolution DFC2018 dataset are realistic and almost indistinguishable from the ground truth images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.