Abstract

AbstractThe field of Quantum Chaos is referred to as the study of quantum behaviors of systems whose corresponding classical dynamics are chaotic, or study of quantum manifestations of classical chaos. Equivalently, it means that quantum behaviors depend on the nature of the classical dynamics, implying that classical chaos can be used to control or manipulate quantum behaviors. We discuss two examples here: using transient chaos to control quantum transport in nanoscale systems and exploiting chaos to regularize relativistic quantum tunneling dynamics in Dirac fermion and graphene systems.KeywordsQuantum TunnelingClassical DynamicQuantum TransportTunneling RateUnstable Periodic OrbitThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.