Abstract

The explicit two-step Runge-Kutta (TSRK) formulas for the numerical solution of ordinary differential equations are analyzed. The order conditions are derived and the construction of such methods based on some simplifying assumptions is described. Order barriers are also presented. It turns out that for order $p\le 5$ the minimal number of stages for explicit TSRK method of order $p$ is equal to the minimal number of stages for explicit Runge-Kutta method of order $p-1$. Numerical results are presented which demonstrate that constant step size TSRK can be both effectively and efficiently used in an Euler equation solver. Furthermore, a comparison with a variable step size formulation shows that in these solvers the variable step size formulation offers no advantages compared to the constant step size implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.