Abstract
The Lorentz transformations are represented by Einstein velocity addition on the ball of relativistically admissible velocities. This representation is by projective maps. The Lie algebra of this representation defines the relativistic dynamic equation. If we introduce a new dynamic variable, called symmetric velocity, the above representation becomes a representation by conformal, instead of projective maps. In this variable the relativistic dynamic equation for systems with an invariant plane becomes a non-linear analytic equation in one complex variable. We obtained explicit solutions for the motion of a charge in uniform, mutually perpendicular electric and magnetic fields. By assuming the Clock hypothesis and using these solutions, we were able to describe the space-time transformations between two uniformly accelerated and rotating systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.