Abstract

We study multivariate tenser product problems in the worst case and average case settings. They are defined on functions of d variables. For arbitrary d, we provide explicit upper bounds on the costs of algorithms which compute an ϵ-approximation to the solution. The cost bounds are of the form (c(d) + 2)β1(β2 + β3(ln 1/ϵ)/(d − 1))β4(d − 1)(1/ϵ)β5. Here c(d) is the cost of one function evaluation (or one linear functional evaluation), and βi′s do not depend on d; they are determined by the properties of the problem for d = 1. For certain tensor product problems, these cost bounds do not exceed c(d)Kϵ−p for some numbers K and p, both independent of d. However, the exponents p which we obtain are too large. We apply these general estimates to certain integration and approximation problems in the worst and average case settings. We also obtain an upper bound, which is independent of d, for the number, n(ϵ, d), of points for which discrepancy (with unequal weights) is at most ϵ, n(ϵ, d) ≤ 7.26ϵ−2.454, ∀d, ϵ ≤ 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.