Abstract

The coupled exciton-vibrational dynamics of a three-site model of the Fenna-Matthews-Olson complex is investigated using the numerically exact multilayer multiconfiguration time-dependent Hartree approach. Thereby the specific coupling of the vibrational modes to local electronic transitions is adapted from a discretized experimental spectral density. The solution of the resulting time-dependent Schrödinger equation including three electronic and 450 vibrational degrees of freedom is analyzed in terms of excitonic populations and coherences. Emphasis is put onto the role of specific ranges of vibrational frequencies. It is observed that modes between 160 and 300 cm(-1) are responsible for the sub-picosecond population and coherence decay. Further, it is found that a mean-field approach with respect to the vibrational degrees of freedom is not applicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.