Abstract

Abstract Extending our previous work we construct weakly holomorphic Hecke eigenforms whose period polynomials correspond to elements in a basis consisting of odd and even Hecke eigenpolynomials induced by only cusp forms. As an application of our results, we give an explicit construction of the holomorphic parts of harmonic weak Maass forms that are good for Hecke eigenforms. Moreover, we give an explicit construction of the Hecke-equivariant map between the space of weakly holomorphic cusp forms and two copies of the spaces of cusp forms, and show that the map is compatible with the corresponding map on the spaces of period polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.