Abstract
A Howe curve is defined as the normalization of the fiber product over a projective line of two hyperelliptic curves. Howe curves are very useful to produce important classes of curves over fields of positive characteristic, e.g., maximal, superspecial, or supersingular ones. Determining their feasible equations explicitly is a basic problem, and it has been solved in the hyperelliptic case and in the non-hyperelliptic case with genus not greater than 4. In this paper, we construct an explicit plane sextic model for non-hyperelliptic Howe curves of genus 5. We also determine the number and type of singularities on our sextic model, and prove that the singularities are generically 4 double points. Our results together with Moriya-Kudo's recent ones imply that for each s∈{2,3,4,5}, there exists a non-hyperelliptic curve H of genus 5 with Aut(H)⊃V4 such that its associated plane sextic has s double points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.