Abstract

Most of the existing researches on recommendation system assemble in how to enhance precision of recommendation, ignoring acceptance and recognition of users. To work out the problem, a model of explainable recommendation on account of knowledge graph as well as many-objective evolutionary algorithm is proposed, which combines recommendation and explanation. In this work, embedding vectors obtained by embedding-based method are used to quantify the explainability, so as to obtain the explainability of paths between users and items. Candidate recommendation list of users is gained from constructed knowledge graph. Many-objective evolutionary algorithm is used to optimize the list of candidate recommendation so as to seek a set of tradeoff solutions to the four objective functions of accuracy, diversity, novelty and explainability. Then, the best path among object user and recommended items is chosen in knowledge graph as the explanation. Finally, the conclusion that can be drawn from various experiments is that the presented model can boost explainability without reducing the precision, diversity as well as novelty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.