Abstract

Electrochemical capacitors (ECs) can provide ultra-long cycle life and ultra-fast energy delivery, characteristics which most battery technologies lack. Making composites out of carbon and pseudocapacitive materials is a popular strategy directed on narrowing the gap in energy density with regard to batteries. Usually, the incorporation of pseudocapacitive materials leads to a decrease in power performance compared to a pure carbon matrix, due to inferior electrical conductivity. This work, however, presents significant improvement in rate capability demonstrated by a composite electrode containing carbon nanofibers (NCNF) and manganese oxides (MnO2). The NCNF/MnO2 is prepared with a common method through the reaction with permanganate. The material has excellent performance metrics, especially a 78.2% rate capability (capacitance retention at 15 A g−1 relative to 0.5 A g−1), more than 10 times that for the NCNF carbon matrix. The exceptional enhancement can be explained by the development of micropores and surface area of NCNF, thus alleviating the “pore starvation” issue, and surface functional groups variation that enhances capacitive performance. This work highlights the importance of paying attention to the modification of carbon substrate when investigating carbon composite electrodes e.g. carbon/MnO2 networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.