Abstract

Recently, a series of high-precision measurements by various experiments show that cosmic ray nuclei spectra begin to harden at ∼200 GV and the boron-to-carbon (B/C) ratio has a similar trend around the same energy. These anomalous structures possibly result from the journey of cosmic rays (CRs) from their sources to our solar system, which has important implications for our understanding of the origin and propagation of Galactic cosmic rays (GCRs). In this work, we investigate several propagation models and attempt to explain these anomalous observations. We have verified that an extension of the traditional propagation model taking into account spatially dependent propagation and secondary particle acceleration provides a more accurate description of the latest B/C ratio and the Helium flux data measured by DAMPE, CALET, and AMS-02.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.