Abstract

SummaryThe genetic effect explains the causality from genetic mutations to the development of complex diseases. Existing genome-wide association study (GWAS) approaches are always built under a linear assumption, restricting their generalization in dissecting complicated causality such as the recessive genetic effect. Therefore, a sophisticated and general GWAS model that can work with different types of genetic effects is highly desired. Here, we introduce a deep association kernel learning (DAK) model to enable automatic causal genotype encoding for GWAS at pathway level. DAK can detect both common and rare variants with complicated genetic effects where existing approaches fail. When applied to four real-world GWAS datasets including cancers and schizophrenia, our DAK discovered potential casual pathways, including the association between dilated cardiomyopathy pathway and schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.