Abstract

AbstractThis study examines the annual cycle of monsoon precipitation simulated by models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), then uses moist energy diagnostics to explain globally inhomogeneous projected future changes. Rainy season characteristics are quantified using a consistent method across the globe. Model bias is shown to include rainy season onsets tens of days later than observed in some monsoon regions (India, Australia, and North America) and overly large summer precipitation in others (North America, South America, and southern Africa). Projected next-century changes include rainy season lengthening in the two largest Northern Hemisphere monsoon regions (South Asia and central Sahel) and shortening in the two largest Southern Hemisphere regions (South America and southern Africa). Changes in the North American and Australian monsoons are less coherent across models. To understand these changes, relative moist static energy (MSE) is defined as the difference between local and tropical-mean surface air MSE. Future changes in relative MSE in each region correlate well with onset and demise date changes. Furthermore, Southern Hemisphere regions projected to undergo rainy season shortening are spanned by an increasing equator-to-pole MSE gradient, suggesting their rainfall will be increasingly inhibited by fluxes of dry extratropical air; Northern Hemisphere regions with projected lengthening of rainy seasons undergo little change in equator-to-pole MSE gradient. Thus, although model biases raise questions as to the reliability of some projections, these results suggest that globally inhomogeneous future changes in monsoon timing may be understood through simple measures of surface air MSE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.