Abstract

In multi-user environments in which data science and analysis is collaborative, multiple versions of the same datasets are generated. While managing and storing data versions has received some attention in the research literature, the semantic nature of such changes has remained under-explored. In this work, we introduce Explain-Da-V, a framework aiming to explain changes between two given dataset versions. Explain-Da-V generates explanations that use data transformations to explain changes. We further introduce a set of measures that evaluate the validity, generalizability, and explainability of these explanations. We empirically show, using an adapted existing benchmark and a newly created benchmark, that Explain-Da-V generates better explanations than existing data transformation synthesis methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.