Abstract

Electromyography (EMG) is one of the most common methods to detect muscle activities and intentions. However, it has been difficult to estimate accurate hand motions represented by the finger joint angles using EMG signals. We propose an encoder-decoder network with an attention mechanism, an explainable deep learning model that estimates 14 finger joint angles from forearm EMG signals. This study demonstrates that the model trained by the single-finger motion data can be generalized to estimate complex motions of random fingers. The color map result of the after-training attention matrix shows that the proposed attention algorithm enables the model to learn the nonlinear relationship between the EMG signals and the finger joint angles, which is explainable. The highly activated entries in the color map of the attention matrix derived from model training are consistent with the experimental observations in which certain EMG sensors are highly activated when a particular finger moves. In summary, this study proposes an explainable deep learning model that estimates finger joint angles based on EMG signals of the forearm using the attention mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.