Abstract

The distinction between informational and computational equivalence of representations, first articulated by Larkin and Simon (1987) has been a fundamental principle in the analysis of diagrammatic reasoning which has been supported empirically on numerous occasions. We present an experiment that investigates this principle in relation to the performance of expert graph users of 2 × 2 “interaction” bar and line graphs. The study sought to determine whether expert interpretation is affected by graph format in the same way that novice interpretations are. The findings revealed that, unlike novices—and contrary to the assumptions of several graph comprehension models—experts' performance was the same for both graph formats, with their interpretation of bar graphs being no worse than that for line graphs. We discuss the implications of the study for guidelines for presenting such data and for models of expert graph comprehension.

Highlights

  • A widely established finding in the diagrammatic reasoning literature is that the interpretation and comprehension of information can be significantly affected by the format of its representation

  • We have found no differences in the patterns of identification due to Gestalt principles, user expectations, or different visual cues, the different perceptual cues in the two graphs may result in different patterns of inference to establish the existence of an interaction effect in bar graphs compared to line graphs

  • One hypothesis is that high levels of graphicacy will result in a reduction in the effect of graph format due to the increased ability to identify and mentally manipulate relevant information in the graph and generate appropriate inferences irrespective of the graphical features used to represent it (e.g., Pinker, 1990)

Read more

Summary

Introduction

A widely established finding in the diagrammatic reasoning literature is that the interpretation and comprehension of information can be significantly affected by the format of its representation. The phenomenon of two graphical representations of the same information resulting in very different behavior has been reported on numerous occasions (e.g., Zacks and Tversky, 1999; Peebles and Cheng, 2003; Kosslyn, 2006; Peebles, 2008) and is typically explained in terms of the distinction between informational and computational equivalence of representations (Larkin and Simon, 1987). Take two widely used representations—bar and line graphs—as an example (see Figure 1) These two formats share a key structural feature; the graphical framework provided by the x and y axes, which defines the Cartesian coordinate system. It has been argued that this framework is an essential element of people’s mental representation (or schema) of these graphs stored in long-term memory that acts as a visual cue for the stored mental representation which is used to interpret the graph (Ratwani and Trafton, 2008)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.