Abstract
We report on an experimental study of the behavior of a number of commercially available quartz tuning forks oscillating in a classical cryogenic fluid, in the form of either liquid helium I or gaseous helium, extending our previous studies [M. Blazkova Phys. Rev. E 75, 025302 (2007)]. Measurements of the damping of the oscillations allowed us to deduce the drag on the prong of a fork, as a function of the velocity with which the prong moves, for various sizes of fork and various oscillation frequencies. Transitions to turbulent flow have been identified, and the dependence of the critical velocity, expressed as a dimensionless critical Keulegan-Carpenter number, on the dimensionless Stokes number has been established. These measurements have not allowed us to visualize the flow, so we have carried out visualization experiments with oscillating rods in water, the rod dimensions, and the frequencies of oscillation, being chosen so that the relevant dimensionless parameters are similar to those for the prongs of the forks. Some information about the nature of the instability that leads to turbulence has been obtained in this way, and the results for the critical Keulegan-Carpenter number for the rods in water have been compared with values for the tuning forks in a cryogenic fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.