Abstract

Tetrahedra may be the ultimate frustrating, disordered glass forming units. Our experiments on tetrahedral dice indicate the densest (volume fraction phi=0.76+/-.02, compared with phi(sphere)=0.64), most disordered, experimental, random packing of any set of congruent convex objects to date. Analysis of MRI scans yield translational and orientational correlation functions which decay as soon as particles do not touch, much more rapidly than the approximately 6 diameters for sphere correlations to decay. Although there are only 6.3+/-.5 touching neighbors on average, face-face and edge-face contacts provide enough additional constraints, 12+/-1.6 total, to roughly bring the structure to the isostatic limit for frictionless particles. Randomly jammed tetrahedra form a dense rigid highly uncorrelated material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.