Abstract

Abstract Predictability experiments are carried out with a divergent barotropic model that describes the evolution of quasi-geostrophic planetary waves and high-frequency gravity-inertia waves. Error growth, relative to a model-determined control state, is initiated by an initialization procedure that is not compatible with the model equations. An analysis of error growth due to improper representation of the physics incorporated in prediction models is also carried out with the present model. The error growth rate and the range of predictability determined from these experiments, based on a simple triad solution of the nonlinear forecast equation, compare very well with the results from experiments carried out with multi-level numerical models. The mechanism of predictability decay by nonlinear energy exchange is shown to differ from the corresponding mechanism discussed by Lorenz and Leith, which is based on a model of two-dimensional turbulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.