Abstract
A large number of processes in the mesoscopic world occur out of equilibrium, where the time evolution of a system becomes immensely important since it is driven principally by dissipative effects. Nonequilibrium steady states (NESS) represent a crucial category in such systems, where relaxation timescales are comparable to the operational timescales. In this study, we employ a model NESS stochastic system, which is comprised of a colloidal microparticle optically trapped in a viscous fluid, externally driven by a temporally correlated noise, and show that time-integrated observables such as the entropic current, the work done on the system or the work dissipated by it, follow the three Lévy arcsine laws [A.C. Barato et al., Phys. Rev. Lett. 121, 090601 (2018)0031-900710.1103/PhysRevLett.121.090601], in the large time limit. We discover that cumulative distributions converge faster to arcsine distributions when it is near equilibrium and the rate of entropy production is small, because in that case the entropic current has weaker temporal autocorrelation. We study this phenomenon by changing the strength of the added noise as well as by perturbing our system with a flow field produced by a microbubble at close proximity to the trapped particle. We confirm our experimental findings with theoretical simulations of the systems. Our work provides an interesting insight into the NESS statistics of the meso-regime, where stochastic fluctuations play a pivotal role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.